1 6 M ay 2 00 9 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p ) by

نویسنده

  • Laurent Berger
چکیده

— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence. Résumé. — Colmez a donné une recette permettant d’associer une représentation modulaire Ω(W ) du sous-groupe de Borel de GL2(Qp) à une Fp-représentationW de Gal(Qp/Qp) en utilisant la théorie des (φ,Γ)-modules de Fontaine. Nous déterminons Ω(W ) explicitement et nous montrons que siW est irréductible et dim(W ) = 2, alors Ω(W ) est la restriction au sous-groupe de Borel de GL2(Qp) de la représentation supersingulière associée à W par la correspondance de Breuil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 4 N ov 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p ) by Laurent

— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by ...

متن کامل

1 N ov 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p )

— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by ...

متن کامل

O ct 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p )

— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W in ...

متن کامل

M ay 2 00 8 Admissible unitary completions of locally Q p - rational representations of GL 2 ( F )

Let F be a finite extension of Q p , p > 2. We construct admissible unitary completions of certain representations of GL 2 (F) on L-vector spaces, where L is a finite extension of F. When F = Q p using the results of Berger, Breuil and Colmez we obtain some results about lifting 2-dimensional mod p representations of the absolute Galois group of Q p to crystabelline representations with given H...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009